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ABSTRACT 

Neisseria gonorrhoeae, designated by the CDC as a critical priority pathogen, is responsible for 

over 1 million new infections annually (CDC, 2021). The rapid proliferation of antimicrobial 

resistance (AMR) within N. gonorrhoeae, driven by horizontal gene transfer and point mutations 

in key loci such as penA, 23S rRNA, and mtrR, has necessitated continuous revisions to 

antibiotic regimens. This study investigates genomic mutations within bacterial DNA contigs to 

identify molecular biomarkers associated with resistance phenotypes. A Support Vector Machine 

(SVM) model was trained on 9967 patient-derived genomic contigs, focusing on resistance 

mechanisms against azithromycin, ciprofloxacin, and cefixime—the most commonly prescribed 

antibiotics targeting N. gonorrhoeae. The SVM model achieved a classification accuracy of 

90.3%, underscoring the efficacy of machine learning in the characterization of resistance 

mechanisms at the molecular level. These findings support the integration of genomic data and 

machine learning approaches for biomarker discovery in the context of precision antimicrobial 

therapy. 

Introduction 

Antibiotic resistance occurs when bacteria evolve to resist the effects of antibiotics, making 

standard treatments ineffective and prolonging the infection. This budding resistance is 

facilitated through horizontal gene transfer or genetic mutations from within a bacterial strain, 

often occurring due to the misuse and overuse of antibiotics in healthcare (Ventola, 2015). 

Antimicrobial resistance (AMR) in Neisseria gonorrhoeae has risen in prevalence in recent years, 

with the World Health Organization (WHO) deeming it a high priority pathogen due to its 

aggressive nature of building resistance to globally prescribed antibiotics (World Health 

Organization, 2024). Antibiotic resistant gonorrhea is a significant global health threat, with 

more than 700,000 new cases worldwide according to a 2022 CDC census. The ability to control 
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the spread of AMR gonorrohea is complicated by the constant emergence of AMR strains 

resistant to front-line antibiotics, heightening the risk of prolonged infections and severe health 

outcomes such as infertility, pelvic inflammatory disease, and even death (Ventola, 2015).  

Traditional methods of diagnosing antimicrobial resistance in Neisseria gonorrhoeae primarily 

rely on culture-based antimicrobial susceptibility testing (Bayot & Bragg, 2024). This process 

involves isolating the bacteria from clinical specimens and exposing them to various antibiotics 

to determine resistance patterns. While this process is widely used, it has several limitations that 

compromise its effectiveness and confinement of AMR gonorrhea strains. As the testing is 

culture-based, the process of incrementally using various antibiotics to pinpoint resistance 

mechanisms can often take days to yield results, delaying effective treatment and increasing risk 

of transmission. Not to mention that these tests can be prone to human error, especially in 

settings with the absence of proficient expertise. The failure to recognize external environmental 

factors coupled with the lack of specialized laboratory equipment required to process the 

susceptibility tests limits effective diagnosis of AMR gonorrhea in regions that contain the most 

densely resistant strains of AMR gonorrhea (Ersoy et al., 2017). 

Biomarkers for AMR in Neisseria gonorrhoeae include specific genetic elements like mutations 

in the 23S rRNA gene which confer resistance to macrolides in traditional antibiotics, as well as 

alterations in the penA gene which compromise beta-lactam antibiotics (Ma et al., 2020). 

Advances in next-generation sequencing (NGS) and bioinformatics tools, like CARD and 

ResFinder, along with machine learning models, enable the rapid identification of these 

biomarkers from bacterial genomes. These innovations have furthered the understanding of 

genetic marker identification, bypassing traditional culture-based methods (Ellington et al., 

2016). Prior studies have demonstrated the promise of machine learning in biomarker analysis of 

AMR, yet they often lack comprehensive integration gene validation and balanced accuracy of 

identified biomarkers (Sakagianni et al., 2023; Kim et al., 2022; Coll et al., 2024). Not to 

mention effective handling of broad range strains from various geographical regions, which often 

leads to biases and generalizations within significant contig associations. This study addresses 

these gaps by employing a support vector machine (SVM) model for rigorous analysis, extensive 

validation, and the use of synthetic minority oversampling to handle class imbalances - thereby 

enhancing predictive accuracy and reliability. 

Method 

Dataset 

NCBI’s AMRFinderPlus is an open source scientific tool that identifies AMR genes and 

resistance-associated point mutations using protein annotations and/or assembled nucleotide 
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sequences (Feldgarden et al., 2021). The samples used for data in this research were retrieved 

from AMRFinderPlus’s bacterial antimicrobial resistance reference gene database. The dataset 

consisted of 9967 samples of patient DNA sequences: 3478 samples of Azithromycin, 3088 

samples of Ciprofloxacin, and 3401 samples of Cefixime. Each sample contained binary data 

regarding the presence or absence of a certain contig along with the associated resistance value 

for that given antibiotic. In Table 1 below, the Pattern ID column contains the identifying info 

for each sample. The “ACGGCACCGTCAGTATA” (Table 1) and 

“ACGTTTATGCCGTTATCG” (Table 1) are two tailored contigs that make up whole contigs 

sequences that last hundreds of characters long. The presence of a contig or resistance within a 

patient DNA sequence is denoted by the value 1 for present or 0 for absent.  

Table 1. Sample view of dataset for patients treated with Azythromycin 

 

The samples from this dataset were collected from several regions of the world to minimize bias 

within the results and prevent a skew towards a particular strain of N. gonorrhoeae. These 

regions include countries within North America, South America, Africa, Europe, Asia, and 

Australia (Figure 1). 

Figure 1. Map of patient sample source locations 
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Data Processing 

The initial dataset contained 584,362 contigs, short DNA sequences shared by subsets of 

bacterial strains. To make the machine learning model’s analysis more efficient and refined, the 

dataset was cleaned using statistical association filtering of the pangenomes (Colquhoun et al., 

2020). This meant dropping any samples from the training data that contained pangenomes with 

gene sets that had ambiguous nucleotide coverage. Using pangenomes to filter the dataset was 

critical to configuring the model as many of the DNA samples could have unlimited gene pools 

and needed to be dropped based on gene cluster diversities. This allowed the dataset to include 

only contigs with either the presence or absence of antibiotic resistance, leaving no samples that 

may contain insufficient phenotype data.  

The phenotype data, indicating resistance (1) or no resistance (0) to the 3 antibiotics, was 

extracted from the metadata file. Samples without a value for this phenotype were removed to 

ensure completeness, resulting in a final set of 8,478 samples out of the original 9,967 samples.  

Next, the contig data was loaded and transposed to match the sample IDs in the phenotype data. 

This ensured that only samples with available resistance measures were included, aligning the 

feature matrix with the phenotype labels using De Bruijn node traversal (Jaillard et al., 2018). 

The processed contigs consisted of feature data that represented the presence or absence of 

specific DNA sequences across the samples.  

Model 

A Support Vector Machine (SVM) model was chosen for this study. SVMs are known for their 

capabilities in solving binary classification problems with high-dimensional data, making them 

an ideal choice for this study (Huang et al., 2018). Previous studies have demonstrated the 

potential of similar machine learning models in AMR prediction, however, SVMs specifically 

aren’t as widely used. Therefore, its capabilities will be tested in this study and will later be 

compared against other machine learning models from prior studies.  

A support vector machine model is well-suited for this study due to its ability to efficiently 

handle high-dimensional data and utilize support vectors to make conclusions from statistical 

analysis of complex patterns from within datasets. It works by finding the best boundary, or 

decision surface, that separates data points into different categories. This boundary is chosen to 

maximize the margin between the data points of different classes, effectively placing it as far 

away as possible from any data point. With the optimized hyperplane, the SVM is able to derive 

distinctions within the original data space, and visualize trends within the data that facilitate 

suitable conclusions (Saini, 2024). 
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The SVM model was configured with a linear kernel - an efficient and appropriate parameter for 

datasets where the decision boundary between classes is expected to be linear or nearly linear. 

The regularization parameter (C) was set to 0.01, balancing the trade-off between maximizing 

the margin and minimizing classification error. This value was determined through a grid search 

and cross-validation to optimize model performance (Czarnecki et al., 2015). Additionally, the 

gamma parameter for the kernel coefficient was set to 1e-06. This ultimately influenced the 

position of the support vectors and therefore the decision boundary's shape. 

For training the SVM, the dataset was divided into training and testing sets using 5-fold cross-

validation. This approach ensured that the model was trained and validated on different subsets 

of the data in an 80% training and 20% testing split, providing an accurate evaluation of its 

performance (Sinha & Figini, 2023). 

The SVM (kernel = ‘linear’; C=0.01; gama = 1e-06) was used to extract features (gene clusters) 

relevant to resistant phenotypes. Features with importance values greater than zero were selected. 

These identified gene clusters were then matched against the CARD database (McArthur et al., 

2013) to pinpoint known AMR genes. The presence/absence data collected from the genes and 

their corresponding phenotypes for each antibiotic was analyzed to create a statistical ranking 

system for AMR contigs in gonorrhoeae.  

The differentiation between the gene predictors having higher and lower coefficient values, 

which indicated their association with susceptibility, was calculated through evaluation of the 

hyperplane margins and distribution of the contigs within the feature space in the DNA 

sequence. 

Genes with unknown functions were checked with the CARD database in order to identify the 

proportion of genes related to mobile elements commonly found in AMR. Around 21% of the 

genes were listed as mobile functioning genes indicating that they are biomarkers for antibiotic 

resistance in gonorrhea.  

Hyperparameter tuning was performed using a grid search to identify the optimal values for the 

regularization parameter (C) and gamma to ensure that the chosen parameters generalized well to 

unseen data. This process involved testing different combinations of these parameters and 

selecting those that yielded the highest balanced accuracy score, which accounts for both 

sensitivity and specificity, making it particularly important for datasets with imbalanced classes 

(Nashaat, 2023). 

The SVM model was then trained on the training set using the optimal hyperparameters 

identified. During training, the model aimed to find the hyperplane that best separated the 

resistant and sensitive strains of Neisseria gonorrhoeae. Following the model training process, 
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the model's performance was evaluated on the testing set. Predictions were made by applying the 

learned decision function to the test data, and samples with a predicted value greater than 0.5 

were classified as resistant, while those with a value of 0.5 or less were classified as sensitive. 

The model's balanced accuracy was computed to assess its predictive power. 

Figure 2. Method workflow of sequential steps from initial data collection to final 

biomarker identification using SVM 

 

Results 

With the comprehensive filtered dataset of DNA contigs with the presence and absence of AMR 

to Neisseria Gonorrhoeae, our objective was to create a comparative assessment of which contigs 

were most statistically significant in contributing to the gene sets of known microbial resistance. 
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The performance of the SVM model was measured using accuracy of the training and validation 

sets, as well as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) 

curve. 

Figure 3. Receiver Operating Characteristic (ROC) curve illustrating the SVM model 

performance of discriminative ability plotted against a classifier with random 

discriminants - the diagonal line. 

 

The total training was 19 minutes and 31 seconds and the testing time was approximately 10.1 

seconds per fold for each of the 5 fold subsets of data in the 5-fold cross-validation. The model 

reached a training accuracy of 88.9% and a validation accuracy of 92.1% - the final overall 

model accuracy coming out to 90.3%. 

The positive predictors (Figure 4) are genetic markers that were significantly associated with the 

presence of resistance, indicating that these specific DNA sequences are more likely to be found 

in resistant strains. Conversely, negative predictors are genetic markers associated with the 

absence of resistance, suggesting that these sequences are prevalent in non-resistant strains. 

There were 56 total genetic biomarkers that were identified by the SVM model. This was 

facilitated through analysis of the configured support vectors and their corresponding 

coefficients, which indicated the relative importance of each contig on the decision hyperplane. 
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Figure 4. Chart displays the top positive and negative contig predictors of AMR Neisseria 

gonorrhoeae for the antibiotics Azithromycin, Ciprofloxacin, and Cefixime, respectively 
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Discussion 

This study has resulted in the development of a hierarchical machine learning model that utilizes 

SVM to diagnose antibiotic resistance in Neisseria gonorrhoeae with a balanced accuracy of 

90.3%. As observed in the ROC curve, the Area Under the Curve (AUC) was 0.86. This high 

AUC score demonstrates that the model has a strong diagnostic ability to distinguish between 

resistant and non-resistant strains of Neisseria gonorrhoeae across varying discriminant 

thresholds. This can be seen when compared to the random chance discriminant (diagonal line) 

as the model displays a high true positive rate while maintaining a low false positive rate, 

meaning that it correctly identifies a large proportion of resistant strains. 

The model was also able to evaluate the DNA contigs and produce a feature ranking system 

(Figure 4) of key biomarker contigs that had a strong statistical correlation with AMR among the 

3 individual antibiotics. The top negative and positive predictors for contigs with AMR were 

displayed along with their respective feature scores. It is important to note that the singular 

presence of any one contig with AMR is not enough alone to prove resistance as the whole DNA 

sample of the patient must be considered along with the feature scores of its contigs in order to 

accurately represent the full scale of microbial resistance. And this model is able to accurately 

assess the AMR severity based on these varying factors. 

This study places greater emphasis on addressing temporal variability and biomarker 

identification than prior studies. In comparison to Yang & Wu (2022) and Tzelves et al. (2022), 

our achieved AUC score of 0.86 (Figure 3) was on par with these studies likely due to our model 

choice and extensive parameter tuning. Tzelves et al. used logistic regression without effective 

regularization parameters unlike our model which leveraged a penalty parameter C set to 1 with 

a linear Kernel. Ultimately resulting in its AUC score of 0.76. Our extensive attention to 

regularization led to our model’s effective deployment of creating a statistical ranking system for 

the significant biomarker contigs from within the DNA sequences. However, Yang & Wu also 

leveraged a support vector machine model and achieved 95% accuracy, a better performance 

than our model. This is likely due to their extensive consideration of gene pools with 

hypothetical protein annotations. This allowed Yang & Wu to further investigate the mobile 

element function of these genes, further refining the dataset which their SVM was trained on. As 

a result, their model reached a higher accuracy than our model. This demonstrates the importance 

of selecting critical genes and considering mobile phenotype elements for enhanced prediction of 

AMR mechanisms.  

Areas for improvement 



International Journal of Social Science and Economic Research 

ISSN: 2455-8834 

Volume:09, Issue: 11 "November 2024" 

 

www.ijsser.org                              Copyright © IJSSER 2024, All rights reserved Page 5577 
 

The model’s selection of the significant contigs was based on their statistical association with 

resistance. While this approach is the most direct way of predicting biomarkers correlated with 

AMR, it could be susceptible to conforming to majority features. This means the model could 

contain bias that overlooks less biologically significant but potentially important biomarkers 

linked with AMR resistance. This possibility could be linked to the geographic collection of the 

samples and how the majority are collected from Western Europe (Figure 1). Recent studies 

demonstrate that if a singular strain from a particular region has undergone multiple gene 

transfers, then it is very possible that its feature selection could skew the training data with 

majority features that may overlook collected samples of regional strains with minority 

frequency in the dataset (Kim et al., 2022). This in total may lower the overall accuracy of the 

model, as well as reduce its applicability in a clinical setting. 

Errors may also stem from linkage disequilibrium, which occurs when non-resistant contig 

strains are associated with resistance due to their relative location near actual resistance 

mechanisms. This means that certain statistically significant contigs associated with AMR may 

have been linked to resistance due to linkage disequilibrium rather than direct involvement with 

resistant strains. The biological relevance of these contigs requires further validation to ensure 

they are genuine markers of resistance rather than artifacts of genetic linkage as seen in Mo et al. 

(2022). However, the number of incorrectly identified significant biomarkers was minimized 

during preprocessing as contigs within each sample were labeled with their respective 

homologous regions and were dropped if they didn’t co-express with resistance genes. 

Future Studies 

Antibiotic-resistant strains of Neisseria gonorrhoeae evolve over time from selective pressures 

from antibiotic usage and horizontal gene transfer. The dataset used for this study spans several 

years, but resistance mechanisms are sensitive to mutation, potentially rendering the model less 

accurate for more recent or future strains. Past studies have highlighted the importance of 

considering temporal changes in resistance patterns as they are capable of causing discrepancies 

between training data and current clinical studies (Javvadi & Mohan, 2024). This stresses the 

importance of consistently updating the model’s training data for future studies in order to 

preserve its accuracy and utility in a clinical setting. 

This study identified 56 potential biomarkers for AMR in gonorrhoeae, of which 11 are novel 

and are not registered within the NCBI AMRFinder+ database. In order to validate these novel 

biomarkers, implementation of this model in a real-world clinical setting is vital. This involves 

validating the identified biomarkers in geographically diverse clinical environments and ensuring 

that the model can accurately predict resistance in new, unseen data. Clinical trials and 
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prospective studies would be instrumental in determining the practical utility of the model for 

guiding antibiotic therapy in clinical practice. 

Conclusion 

In this study, we demonstrated that genome-based feature selection is an effective approach for 

predicting antibiotic resistance within gonorrhea patients. The SVM model leveraged an intense 

gene selection sorting coupled with statistical significance ranking in order to identify AMR 

biomarkers commonly associated with resistance. As similar research suggests, more 

sophisticated methods are available in order to achieve higher accuracies and more 

comprehensive phenotype discoveries. Further consideration of the geographical influence on 

gene transfers within patients of a specific region that may reveal a dominant strain of AMR that 

skews feature data. We hope this study serves as a supplement for furthering genomic based 

research and for bettering predictions for AMR pathogens in bacterial infections. 
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