References
[1]. Kim, D. H., Sang, W. P., Kim, D. H., Yoo, M. S., & Lee, Y. (2018). Feasibility of
sinogram reconstruction based on inpainting method with decomposed sinusoid-like
curve (s-curve) using total variation (tv) noise reduction algorithm in computed
tomography (ct) imaging system: a simulation study. Optik.
[2]. Wang, L., Zhang, H., Cai, A., Li, Y., Yan, B., & Li, L., et al. (2015). System matrix
analysis for sparse-view iterative image reconstruction in x-ray ct. J Xray Sci Technol,
23(1), 1-10.
[3]. Do, S., Karl, W. C., Singh, S., Kalra, M., Brady, T., & Shin, E., et al. (2014). High fidelity
system modeling for high quality image reconstruction in clinical ct. Plos One, 9(9), e111625.
[4]. Rowley, L. M., Bradley, K. M., Boardman, P., Hallam, A., & Mcgowan, D. R. (2017).
Optimization of image reconstruction for 90y selective internal radiotherapy on a
lutetium yttrium orthosilicate pet/ct system using a bayesian penalized likelihood
reconstruction algorithm. Journal of Nuclear Medicine Official Publication Society of
Nuclear Medicine, 58(4), 658.
[5]. Mo Hua, Long Lingli. Convolution back projection graphic method for X-CT image
reconstruction [J]. Chinese Journal of Medical Physics, 1999, 16(3):143-145.
[6]. China Society for Industrial and Applied Mathematics. (2017). Higher Education Club
Cup National Contest on Mathematical Modeling for College Students. http://www.
mcm.edu.cn
[7]. Fan Huiyun. Research on CT Image Filtering Back Projection Reconstruction Algorithm
[D]. Northwestern Polytechnical University,2007.
[8]. Yi Xiaofei, Chen Fujie, Yang Xuejun. Image template matching based on Wiener filtering
[J]. Computer research and development,2000(12):1499-1503.
[9]. Liang Xiaoping, Luo Xiaoshu. Wiener filtering image deblurring algorithm based on
genetic adaptation [J]. Journal of Guangxi Normal University (Natural Science Edition),
2017,35(4):17-23. DOI:10.16088/j.issn.1001-6600.2017.04.003.